000 02854nam a22001937a 4500
003 OSt
005 20220324151832.0
008 130101b xxu||||| |||| 00| 0 eng d
020 _a9788126910007
040 _ctshering
082 _a512.9434 KIS
100 _aKishan, Hari.
245 _aA text book of matrices /
_cHari Kishan
260 _aNallathambi street :
_bAtlantic,
_c2008.
300 _aiv, 554 p. :
_bill. ;
_c22.2 cm.
520 _aA matrix is an ordered set of numbers listed in rectangular form having certain rows and columns. The knowledge of matrices is considered necessary in various areas of Mathematics and a wide variety of other subjects, like Chemistry, Sociology, Genetics and Electrical Engineering. The importance of Matrix Theory has greatly increased with the invention of Electronic Brain—Computer. It has become a powerful tool of modern Mathematics and is now extensively used in the allied fields of Mathematics including Probability, Statistics, Quantum Mechanics, Mechanics, etc. A Textbook of Matrices covers all the important topics on matrices. The subject matter has been divided into nine chapters. Chapter 1 explains multiplication and addition by scalar, commutative and associative matrices. Special kinds of matrices like Symmetric, Skew-Symmetric, Hermitian, Skew-Hermitian, Involutary, Orthogonal and Unitary have been dealt with in chapter 2. Determinants of matrices have been taken up in chapter 3 which also explains various types of permutations and inversions, Sarrus’s rule, cofactor of an element and properties and working rules of determinants. Chapter 4 takes up adjoint and inverse of a matrix and explains elementary operations and symbols. The rank of a matrix, invariance of rank through elementary transformations and reduction to normal form have been dealt with in chapter 5. Since matrices are widely used to understand different forms and systems of linear equations, chapter 6 has been devoted to the study of linear equations in relation to matrices. Chapter 7 deals with linear independence and dependence of vectors and explains the difference in vectors. Characteristic roots and vectors in Cayley-Hamilton Theorem have been analysed in chapter 8. Since quadratic forms are one of the three most frequently encountered homogeneous forms, chapter 9 explains quadratic form as a matrix product, linear transformations and reduction of quadratic forms into sum of square forms. The book is an ideal textbook on matrices. The language is simple and approach thoroughly illustrative. Several examples and theorems have been included for complete understanding of various concepts. A number of exercises have been added to provide sufficient practice to the students. It will prove immensely useful to the students and teachers of matrices.
650 _aMatrices.
942 _2ddc
_cBK
999 _c5833
_d5833